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Abstract 
In India, the fugitive dust emissions in the processing 

plant and mining area of limestone mines are very high. 

The dust emission of (particulate matter) PM10 and 

PM2.5 forms an unsafe working environment for 

workers in processing plant areas and mining areas. 

The excessive emission of PM10 and PM2.5 will cause 

lung-related diseases to the workers and the people 

existing in the adjacent areas of the mine. The dust 

emission majorly causes air pollution to occur due to 

the distribution of particulate matter in the work area. 

This study majorly investigates the dust emission levels 

of PM10 and PM2.5 in the limestone mine of Kadapa, 

Andra Prasad, India. The investigation on the dust 

emission of PM10 and PM2.5 was carried out as per 

the guidelines of DGMS and MoEF and CC guidelines, 

with a specific focus on PM10 and PM2.5 particulate 

matter.  

 

From the study, it was clear that the dust emission 

levels of PM10 and PM2.5 in the mine area and some 

parts of the processing area were below the permissible 

limit of 1200 μg/m³ as per the National Ambient Air 

Quality Standards (NAAQS, 2009). It was also found 

that the dust emission levels of PM10 and PM2.5 in the 

crushing and screening area of the processing plant 

were above the permissible limit of 1200 μg/m³. Further 

the statistical prediction model was developed using 

linear, quadratic and cubic supervised machine 

learning (regression) modelling. The results indicated 

that the cubic regression model will provide the 

accurate prediction of fugitive dust emission with lower 

error and standard deviation.  
 
Keywords: Dust-emission, Buffer zones, Dust separation 

systems, Dust emission control, Lime stone mines. 

 

Introduction 
In India, the fugitive dust emissions in the processing plant 

and mining area of Limestone mines are very high. The 

major composition of limestone is calcite and a kind of 

calcium carbonate, (CaCO3). This sedimentary rock is 

produced by living creatures (like shellfish) which are the 

producers of CaCO3. After the production, it dissolves in 

seawater and gets deposited as limestone. Some of the 

mining operations such as blasting, excavation, processing 

operations and transportation are major contributors to 

fugitive emissions and air pollution in the work area1,3,7,14-16.  

 

Both biotic and abiotic elements of the environment are 

impacted by air pollution. The particulate matter (PM) 

suspended in the air is majorly composed of calcium, iron, 

silicon oxides and aluminum. The particulate matter larger 

than 10μm in diameter settles more quickly than the smaller 

ones.  

 

The dust emission of (particulate matter) PM10 and PM2.5 

forms an unsafe working environment for workers in 

processing plant areas and mining areas. The excessive 

emission of PM10 and PM2.5 will cause lung-related 

diseases to the workers and the people existing in the 

adjacent areas of the mine. Controlling particulate matter 

dust emissions is crucial for upholding environmental and 

worker safety. The Ministry of Environment, Forests and 

Climate Change (MoEF and CC) requires adherence to the 

National Ambient Air Quality Standards (NAAQS). The 

permissible limit of PM10 and PM2.5 should be less than 

1200 μg/m³ in order to reduce the negative effects on the 

environment and human health in mining areas. 

 

Copeland et al4,5 studied dust suppression in the iron ore 

pellet plant. The authors majorly focussed on the 

suppression of fugitive dust emission of PM10. Further, the 

investigation has provided the optimum curing time of water 

required for dust suppression. They studied the wettability of 

airborne dust particles in the taconite pellet plant. The 

authors majorly focussed on the wettability studies of 

fugitive dust emission of PM10. Further, the investigation 

has provided an optimum wettability range for dust 

suppression. Copeland et al6 investigated a novel dust tower 

for testing the dust suppression of airborne dust particles of 

PM10 during the making process. Further, the investigation 

has provided the correlation between wetting properties and 

dust suppression of PM10. 

 

Zhou et al17 studied coal dust suppression in the 

underground mines. The authors majorly focussed on the 

wettability studies of fugitive dust emission. Further, the 

investigation has provided an optimum wettability range for 

dust suppression. Chaulya et al2,3 studied the fugitive dust 
emission of PM10 and PM2.5 in iron ore mines. The results 

showed that the dust control of the environment is crucial in 

different areas of the mine.  
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The present study investigates the dust emission of PM2.5 

and PM10 in the limestone mine and its statistical prediction 

using linear, quadratic and cubic supervised machine 

learning (regression) modeling in mining and plant areas. 

 

Material and Methods 
The present study was carried out on the limestone mine of 

Kadapa, Andra Prasad, Karnataka. Figure 1 shows the view 

of the working face of the limestone mine. Figure 2 shows 

that the respirable dust sampler (Ecotech AAS 190) and 

particulate dust sampler (Ecotech AAS127) are used for 

testing the fugitive dust samples of PM10 and PM2.5. The 

oven-dried Glass Microfibre filter paper (8×10”) was 

weighed initially (W1) before sampling. The filter paper was 

fixed to the equipment as shown in figure 2. Further, the 

timer of the equipment was set to 8 h (for each shift) and the 

flow rate was maintained at 1.1 m3/min. The testing was 

carried out in different zones of mining areas and processing 

plant areas. After testing, the filter paper was carried out 

from the equipment and weighed as W2 after sampling. 

 
 

 
Fig. 1: View of the working face of Limestone Mine 

 

 
Fig. 2: Respirable dust sampler (Ecotech AAS 190) (PM10) and Particulate dust sampler (Ecotech AAS127) (PM2.5) 
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Particulate matter was analyzed using standard techniques in 

accordance with MoEF and CC norms. Field-collected 

samples were transported to the lab in a plastic zipper and 

placed in a desiccator for a whole day. An electronic balance 

with four-digit precision was used to determine the initial 

weight (W1) and final weight (W2) of the filter paper. 

Equation 1 is used to determine the dust concentration:  

 

Dust concentration =  
W2−W1

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎𝑖𝑟 𝑝𝑎𝑠𝑠𝑒𝑑
                         (1) 

 

Regression modeling and residual analysis of Dust 
emission: In the current work, the PM2.5 and PM10 dust 

emission of the limestone mine was evaluated. After 

obtaining the dust emission, the supervised machine learning 

technique using linear, quadratic and cubic regression 

prediction models was carried out. The current work results 

in providing an accurate predictive model of PM10 and 

PM2.5. Further, the residual analysis was carried out using a 

probability plot for the validation of the predictive model. 

So, the current work deals with the statistical evaluation of 

PM2.5 and PM10 in the processing plant area, mine area and 

nearby residence area of a limestone mine using a respirable 

dust sampler (RDS) (Ecotech AAS 190). 

 

Results and Discussion 
Investigation of PM2.5 dust emission in Plant location 

and Mining location and its prediction studies 

 

Table 1 

Results of PM2.5 dust emission in Plant location and Mining location 

Plant Location Mining Location 

S.N. Location (Shift) 

Dust 

Concentration 

μgm/m3 

S.N. Location (Shift) 

Dust 

Concentration 

μgm/m3 

1 Processing Plant 

Entrance 2 640.52 

1 

Over Burden (OB) 

Excavation 

(Backfilling) 2 

92.17 

2 Processing Plant 

Entrance 1 

730.95 2 

Over Burden (OB) 

Excavation 

(Backfilling) 1 97.15 

3 Conveyor 2 845.98 3 Transfer Terminal 2 91.32 

4 Conveyor 1 904.56 4 Transfer Terminal 1 96.48 

5 Crushing Plant 2 1208.05 5 OB Excavation 2 118.95 

6 Crushing Plant 1 1226.26 6 OB Excavation 1 125.51 

7 Screening Plant 2 1345.89 7 Nearby School 2 129.84 

8 Screening Plant 1 1415.98 8 Nearby School 1 147.62 

   *1 and 2 specify the first and second shifts respectively. 

 

 
Fig. 3(a) 
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Fig. 3(b) 

 

 
Fig. 3(c) 

Figure 3: Prediction results of PM2.5 dust emission in Plant location using (a) Linear, (b) Quadratic  

and (c) Cubic models 
 

Table 1 shows results of PM2.5 dust emission in plant and 

mining locations. From table 1, it is clear that the screening 

and crushing areas of the processing plant have the highest 

PM2.5 dust emission in the first shift and second shift when 
compared to other plant locations. This is majorly due to the 

process of crushing producing more fine dust particles and 

also screening involves the separation of fine and coarse 

particles which causes high material movement for 

stratification8,10-13. Because of this process, PM2.5 dust 

emission is higher for the screening and crushing area 

compared to other plant locations.   
 

From table 1, it was also clear that all the mine locations have 

lesser PM2.5 dust emissions when compared to plant 
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locations. Sprinkling of water was carried out more often 

which reduced the dust dispersion to the environment. Table 

1 also demonstrates that the PM2.5 dust emissions in the 

screening and crushing area of the processing plant exceeded 

the National Ambient Air Quality Standard, 2009's allowable 

limit of 1200 μg/m3.  

 

Figure 3 shows the prediction results of PM2.5 dust emission 

in plant locations using (a) Linear, (b) Quadratic and (c) 

Cubic models. From figure 3, it was clear that the regression 

coefficient (R2) value of PM2.5 dust emission in the plant 

location was 96.7%, 96.8% and 97.7% respectively for (a) 

Linear, (b) Quadratic and (c) Cubic models. This 

demonstrates that the cubic models are the most accurate in 

predicting the PM2.5 dust emission test findings at the plant 

location. 

 

 
Figure 4: Probability plot of the prediction model of PM2.5 dust emission in Plant location 

 

 
Fig. 5(a) 
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Fig. 5(b) 

 

 
Fig. 5(c) 

Figure 5. Prediction results of PM2.5 dust emission in Mining location using (a) Linear, (b) Quadratic  

and (c) Cubic models 

 

The probability plot of the regression model of PM2.5 dust 

emissions in plant locations is shown in figure 4. The 

developed prediction model was validated using the 

probability plot. It was evident from figure 4 that the cubic 

model had a lower mean error and standard deviation than 

the other models. This demonstrates that the best 

mathematical model for predicting the experimental findings 

of PM2.5 emission of plant location is the cubic model. 
 

Figure 5 shows the prediction results of PM2.5 dust emission 

in mining locations using (a) Linear, (b) Quadratic and (c) 

Cubic models. From figure 5, it was clear that the regression 

coefficient value of PM2.5 dust emission in mine location 

was 87.9%, 94.0% and 94.8% respectively for linear, 

quadratic and cubic models.  

 

Additionally, figure 5 demonstrates that the cubic models are 

in close relation with the test results of PM2.5 dust emissions 

at the mining location. Figures 3 and 4 also demonstrate that 
the best model for predicting PM2.5 dust emissions at 

mining and plant locations is the cubic model. 
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Figure 6: Probability plot of prediction model of PM2.5 dust emission in Mining location 

 

Table 2 

Experimental results of PM10 dust emission in Plant location and Mining location 

Plant Location Mining Location 

S.N. Location (Shift) 
Dust Concentration 

μgm/m3 
S.N. Location (Shift) 

Dust Concentration 

μgm/m3 

1 Processing Plant 

Entrance 2 

743.26 1 

Over Burden (OB) 

Excavation 

(Backfilling) 2 44.26 

2 Processing Plant 

Entrance 1 796.54 

2 

Over Burden (OB) 

Excavation 

(Backfilling) 1 

46.22 

3 Conveyor 2 963.14 3 Transfer Terminal 2 95.26 

4 Conveyor 1 998.45 4 Transfer Terminal 1 100.26 

5 Crushing Plant 2 1265.265 5 OB Excavation 2 136.54 

6 Crushing Plant 1 1350.26 6 OB Excavation 1 158.02 

7 Screening Plant 2 1364.24 7 Nearby School 2 332.3 

8 Screening Plant 1 1454.59 8 Nearby School 1 354.16 

 
Figure 6 shows the probability plot of the regression model 

of PM2.5 dust emission in the mining location. After 

obtaining the accurate regression model for the experimental 

results of PM2.5 dust emission in the mine location, the 

model was validated using the probability plot as shown in 

figure 6. From figure 6, it was clear that the mean error of 

the cubic model and standard deviation was lesser when 

compared to other models. This shows that the cubic model 

is the most suitable mathematical model for predicting the 

experimental results of PM2.5 obtained for the mining 

location. 

 

Investigation of PM10 dust emission in Plant location 

and Mining location and its prediction studies 
Table 2 shows experimental results of PM10 dust emission 

in plant and mining locations. In comparison to other plant 

locations, table 2 shows that the screening and crushing area 

has the largest PM10 dust emissions during the first and 

second shifts. The machine's emission of fine-sized dust 

particles was mostly caused by the increased particle 

dispersion in the atmosphere. So, PM10 dust emission is 

higher for the screening and crushing area compared to other 

plant locations.   

 

From table 2, it was also clear that all the mining location 

has less dust suppression compared with the plant location. 

There was a higher movement of transportation vehicles 

which caused the dust particles from the ground to be 

dispersed in the environment. However, the sprinkling of 

water at a regular period has reduced the particle dispersion 

from the ground level.  

 

From table 1, it was also clear that the PM10 dust emission 

in the plant location of the screening and crushing area was 

higher than the permissible limit of 1200 μg/m3 as per the 

National Ambient Air Quality Standard, 2009. 
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Figure 7 shows the prediction results of PM10 dust emission 

in plant locations using (a) Linear, (b) Quadratic and (c) 

Cubic models. From figure 7, it was clear that the regression 

coefficient (R2) value of PM10 dust emission in the plant 

location was 95.7%, 96.3% and 97.6% respectively for (a) 

Linear, (b) Quadratic and (c) Cubic models. This 

demonstrates that the cubic models are the most accurate in 

predicting the PM10 dust emission test findings at the plant 

location. 

 

The probability plot of the regression model of PM10 dust 

emissions in plant locations is shown in figure 8. The 

developed prediction model was validated using the 

probability plot. It was evident from figure 8 that the cubic 

model had a lower mean error and standard deviation than 

the other models. This demonstrates that the best 

mathematical model for predicting the experimental findings 

of PM10 emission of plant location is the cubic model. 

 

Figure 9 shows the prediction results of PM10 dust emission 

in mining locations using (a) Linear, (b) Quadratic and (c) 

Cubic models. From figure 9, it was clear that the regression 

coefficient value of PM10 dust emission in mine location 

was 85.3%, 94.1% and 94.2% respectively for linear, 

quadratic and cubic models. Additionally, figure 9 

demonstrates that the cubic models are in close relation with 

the test results of PM10 dust emissions at the mining 

location. Figures 7 and 9 also demonstrate that the best 

model for predicting PM10 dust emissions at mining and 

plant locations is the cubic model. 
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Fig. 7(c) 

Figure 7: Prediction results of PM10 dust emission in Plant location using (a) Linear, (b) Quadratic  

and (c) Cubic models 

 

 
Figure 8: Probability plot of prediction model of PM10 dust emission in Plant location 

 
Figure 11 shows the probability plot of the regression model 

of PM10 dust emission in the mining location. After 

obtaining the accurate regression model for the experimental 

results of PM10 dust emission in the mine location, the 

model was validated using the probability plot as shown in 

figure 11. From figure 11, it was clear that the mean error of 

the cubic model and standard deviation was lesser when 

compared to other models. This shows that the cubic model 

is the most suitable mathematical model for predicting the 

experimental results of PM10 obtained for the mining 

location. According to the findings, the cubic regression 

model was the most effective model for predicting PM2.5 

and PM10 dust emissions.  

Additionally, the validation results demonstrated that the 

cubic regression model had a smaller mean error and overall 

spread of errors. Also, the developed cubic model is the most 

accurate model with a regression coefficient more than 94%. 

Additionally, the test results demonstrated that the PM2.5 

and PM10 dust emissions from crushing and screening 

exceed the 2009 National Ambient Air Quality Standard's 

allowable limit of 1200 μg/m3. Precautionary steps must 

therefore be made to avoid increased dust emissions. The 

study emphasizes the necessity of more robust dust 

suppression measures, including installing a dry fog dust 

suppression system, to guarantee safe working conditions 
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and adherence to environmental regulations, even in the face 

of efforts to reduce dust exposure. 

 

Conclusion 
The present work aims to test the (Particulate Matter) PM10 

and PM2.5 in the mining area and processing plant area of a 

limestone mine in Andra Pradesh, India using a Respirable 

Dust Sampler (RDS) (Ecotech AAS 190). The statistical 

prediction model was developed using linear, quadratic and 

cubic supervised machine learning (regression) modeling. 

Furthermore, the statistical prediction model was validated 

using a probability plot. The mean error and standard 

deviation were studied for each prediction model. The 

results showed that PM 2.5 and PM10 dust emissions from 

screening and crushing areas of the processing plant were 

over the permissible limit.  

 

The results also showed that PM 2.5 and PM10 dust 

emissions of all mining locations were within the 

permissible limit. The prediction results also showed that the 

cubic regression model is the most suitable mathematical 

model for predicting the experimental results of PM10 and 

PM2.5 obtained from the particulate sampler (Ecotech 

AAS127). Furthermore, the residual analysis using a normal 

probability plot showed that the cubic model has less error 

and an overall spread of errors. These validation results show 

that the cubic model is the most suitable mathematical model 

for predicting the experimental results of PM10 and PM2.5 

obtained from the respective sampler. 
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Fig. 9(c) 

Figure 9: Prediction results of PM10 dust emission in Mining locations using (a) Linear, (b) Quadratic  

and (c) Cubic models 

 

 
Figure 10: Probability plot of prediction model of PM10 dust emission in Mine location 
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